PRÓPOSITO

ESTA PÁGINA HA SIDO CONCEBIDA CON EL FIN DE APOYAR A LOS ASPIRANTES A LA ESCUELA MÉDICO NAVAL DE MÉXICO EN SU PROCESO DE ESTUDIO DEL TEMARIO PARA SU EVALUACIÓN.

BUEN VIENTO Y BUENA MAR ASPIRANTES Y FUTUROS POTROS.

ATTE. LA MADRE DE UNA CADETE

viernes, 30 de noviembre de 2012

DESVIACIÓN ESTANDAR

La desviación estándar o desviación típica

La desviación típica o estándar es la raíz cuadrada de la varianza.
Es decir, la raíz cuadrada de la media de los cuadrados de las puntuaciones de desviación.
La desviación típica se representa por σ.
de relación típicadesviación

Desviación típica para datos agrupados

desviación típicadesviación
Para simplificar el cálculo vamos o utilizar las siguientes expresiones que son equivalentes a las anteriores.
desviación típicadesviación típica

Desviación típica para datos agrupados

desviación típicadesviación típica

Ejercicios de desviación típica

Calcular la desviación típica de la distribución:
9, 3, 8, 8, 9, 8, 9, 18
media
Desviación típica
Calcular la desviación típica de la distribución de la tabla:
 xifixi · fixi2 · fi
[10, 20)15115225
[20, 30)2582005000
[30,40)351035012 250
[40, 50)45940518 225
[50, 60)55844024 200
[60,70)65426016 900
[70, 80)75215011 250
  421 82088 050
media
desvición típica

Propiedades de la desviación estándar

La desviación típica será siempre un valor positivo o cero, en el caso de que las puntuaciones sean iguales.
Si a todos los valores de la variable se les suma un número la desviación típica no varía.
Si todos los valores de la variable se multiplican por un número la desviación típica queda multiplicada por dicho número.
Si tenemos varias distribuciones con la misma media y conocemos sus respectivas desviaciones típicas se puede calcular la desviación típica total.
Si todas las muestras tienen el mismo tamaño:
desviación típica
Si las muestras tienen distinto tamaño:
desviación típica

Observaciones sobre la desviación estándar

La desviación estándar, al igual que la media y la varianza, es un índice muy sensible a las puntuaciones extremas.
En los casos que no se pueda hallar la media tampoco será posible hallar la desviación típica.
Cuanta más pequeña sea la desviación típica mayor será la concentración de datos alrededor de la media.

EJERCICIOS
A.-El resultado de lanzar dos dados 120 veces viene dado por la tabla:
Sumas23456789101112
Veces38911201916131164
1. Calcular la media y la desviación típica.
2. Hallar el porcentaje de valores comprendidos en el intervalo (− σ, + σ).
B. Las alturas de los jugadores de un equipo de baloncesto vienen dadas por la tabla:
Altura[170, 175)[175, 180)[180, 185)[185, 190)[190, 195)[195, 2.00)
Nº de jugadores134852
Calcular:
1. La media.
2. La mediana.
3. La desviación típica.
4. ¿Cuántos jugadores se encuentran por encima de la media más una desviación típica?
C. 
El histograma de la distribución correspondiente al peso de 100 alumnos de Bachillerato es el siguiente:
histograma
1. Formar la tabla de la distribución.
2. Si Andrés pesa 72 kg, ¿cuántos alumnos hay menos pesados que él?
3. Calcular la moda.
4. Hallar la mediana.
5. ¿A partir de que valores se encuentran el 25% de los alumnos más pesados?
D.-
Considérense los siguientes datos: 3, 8, 4, 10, 6, 2. Se pide:

1. Calcular su media y su varianza.
2. Si los todos los datos anteriores los multiplicamos por 3, cúal será la nueva media y desviación típica.

No hay comentarios: